

Soit M un point de coordonnées polaires $M(r; \theta)$, avec r < 1.

Si on choisit un point dans le disque unité, avec deux coordonnées cartésiennes tirées selon deux lois uniformes, la probabilité que ce point appartiennent à la portion de couronne coloriée (pour peu que δ_{θ} soit suffisamment petit) est égale à l'aire de cette portion de couronne, rapportée à l'aire du disque unité, soit

$$\frac{\left[\pi(r+\delta_r)^2 - \pi(r-\delta_r)^2\right] \cdot \frac{2\delta_\theta}{2\pi}}{\pi \times 1^2}$$

soit,

$$\frac{4r\delta_r.\delta_{\ell}}{\pi}$$

Si, cette fois, on choisit un point dans le disque unité, avec ses coordonnées polaires (ρ, α) tirées selon deux lois uniformes, la probabilité devient :

$$P(\rho \in [r - \delta_r, r + \delta_r] \text{ et } \alpha \in [\theta - \delta_\theta, \theta + \delta_\theta]) = 2\delta_r \cdot \frac{2\delta_\theta}{2\pi} = \frac{2\delta_r \delta_\theta}{\pi}$$

ce qui n'est pas la même chose.

Si, enfin, on choisit un point dans le disque unité, avec ses coordonnées polaires (ρ, α) mais que cette fois, le rayon est tiré selon la racine carrée d'une loi uniforme (on écrira $\rho = \sqrt{u}$), la probabilité devient :

$$P(\sqrt{u} \in [r - \delta_r, r + \delta_r] \text{ et } \alpha \in [\theta - \delta_\theta, \theta + \delta_\theta]) = P(r - \delta_r \leqslant \sqrt{u} \leqslant r + \delta_r) \cdot \frac{2\delta_\theta}{2\pi}$$

Et comme

 $P(r - \delta_r \leq \sqrt{u} \leq r + \delta_r) = P((r - \delta_r)^2 \leq u \leq (r + \delta_r)^2) = (r + \delta_r)^2 - (r - \delta_r)^2 = 4r\delta_r$ On obtient donc une probabilité de

$$4r\delta_r.\frac{2\delta_\theta}{2\pi}$$

soit

$$\frac{4r\delta_r.\delta_\theta}{\pi}$$